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1 Spheroid Geometry

For many purposes, it is entirely adequate to model the earth as a sphere.
However, in reality, the earth’s mean sea-level surface is better approximated by
a different geometric shape, an oblate spheroid— the surface created by rotating
an ellipse about its polar axis. Compared to a sphere, an oblate spheroid is
flattened at the poles. The earth’s flattening is quite small, about 1 part in 300,
and navigation errors induced by assuming the earth is spherical, for the most
part, do not exceed this, and so for many purposes a spherical approximation
may be entirely adequate. On a sphere, the commonly used coordinates are
latitude and longitude, likewise on a spheroid, however on a spheroid one has
to be more careful about what exactly one means by latitude.

In Figure 1 we depict a cross-section of the spheroid through the poles. The
point O is the center of the earth. B is the North Pole. The major (equatorial)
axis, OA, of the meridional ellipse has length a, the minor (polar) axis, OB has
length b. A point P on the ellipse has coordinates (acosf,bsinf) where the
angle /AOP' is called the reduced or parametric latitude. The point P’ is the
point on the circumscribing circle (of radius a) the same distance from the polar
axis as P. The angle ZAOP is called the geocentric latitude.

However, the latitude used in navigation and geodesy is the geodetic or
astronomical latitude, which is defined to be the angle between the northerly
horizon at P and the polar axis. It is equal to the angle ¢ in Figure 1.

Longitude, L, is defined in exactly the same way on the spheroid as on
the sphere, namely as the angle between the meridian and the prime meridian.
We use here the standard convention of North longitudes and East latitudes as
positive.

In three dimensional Cartesian coordinates, points on the spheroid have
coordinates (acosé cos L,acos@sin L, bsin ).

There are alternative ways of specifying the dimensions of the spheroid other
than by its major and minor radii @ and b. The flattening, f, is defined by
f =1—b/a, and the eccentricity e by e* = 1 —b?/a®. For the WGS84 spheroid,
a = 6378.137 km and f = 1/298.257223563. The eccentricity and flattening are
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Figure 1: The meridional ellipse

thus related by:
2= f(2-f) (1)
1.1 Differential geometry

A displacement of df in parametric latitude along the meridional ellipse is il-
lustrated in Figure 2. The poleward displacement is d(bsin#) = bcosfdf and
the equatorial component is d(acosf) = —asin8df From this we see that the
geodetic and parametric latitudes are related by

tan¢ = (a/b) tané (2)

and that the displacement along the meridian is given by:

(a®sin? 0 + b cos?6)'/2d0 = a(l — €® cos® §)1/2dh

(1—¢) _
a(l — e2sin? ¢)3/2 d¢ = Ry do )

Ry is the radius of curvature of the meridional arc at P. The radius of
curvature in the perpendicular plane (i.e. in the plane of the parallel), Ry, is
given by

OD = acosf = acosp/(1 — e sin? ¢)'/? (4)
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Figure 2: Triangle resulting from infinitesimal latitude change
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Figure 3: Triangle resulting from infinitesimal latitude and longitude changes



In Figure 3 we illustrate the result of a displacement of df in paramet-
ric latitude and of dL in longitude, resulting in a Northerly displacement of
a(l — e?cos?9)'/2df and an Easterly displacement of acos@dL, respectively.
By Pythagoras’ theorem the displacement distance ds is given by:

ds? = a*(cos®> dL? + (1 — e? cos® §) d6?) (5)
or, using eqn. (2),

cos? ¢pdL? (1 — e2)2dg?

ds? = a®
(1 —e2sin’¢ (1 — e2sin” @)

) (6)

The true course « is given by:

B cos dL _ cos¢(1 —e?sin? ¢) dL
tana = (1—e2cos26)1/2df 1—e? d¢ ™

where we have again used Eqn. (2) to transform between reduced and geodetic
latitude coordinates. Equations (5), (6) and (7) are the fundamental relations
relating distances and directions on the spheroid at a point.

2 Rhumb Lines

Rhumb lines are paths of constant true course. They thus satisfy Eqn. (7) with
« constant. This is most easily treated in geodetic coordinates. Integrating this
equation, we obtain:

[ _ tana 1+sin¢) (1—esing\\|’
I = 2 0g<(1—sm¢) <1+esin¢) ) #1
o e/2 ¢
= tana log (tan(¢/2+71'/4) (%) ) ©
¢1

giving the coordinates of points (¢, L) on a rhumb line with course a through

(¢1 ’ Ll)
Inverting this relation, to find the geodetic latitude ¢ given the longitude L,
can most readily be done iteratively, using;:

(1+esin¢) e/2

1—esing

14esin @1
l1—esin @1

L—-L
¢=—m/2+2tan"! | tan(ep; /2 + w/4) exp ( ton a1>
(9)
starting with ¢ = ¢1 on the RHS.
Combining equations (6) and (7) with « constant gives us a differential
equation for the arc-length along the rhumb line:

ds _ a(l — e?)
dé  cosa(l — e2sin? ¢)3/2

(10)
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Thus we find that s is given by

s = (M(¢) — M(¢1))/ cosa (11)

where the function M(¢) is the distance from the equator to the ¢ parallel
measured along a meridian, given by:

1—¢?

d) !
M(9) = a/o (1= czan? gy ¢ (12)

Formally, M(¢) can be expressed in terms of the elliptic integral of the

second kind E(¢, e) by[1]
M($) = a(E(¢,e) — e’ sin g cos ¢/(1 — e” sin” ¢)'/?) (13)
Expanding to O(e®), M (¢) is approximately given by[4]:
M(#) = a [(1-e*/4—3e*/64—5e5/256—...)¢

[

(3e?/8 + 3e*/32 + 45€%/1024 + . . .) sin 2¢

+  (15e*/256 4 45€°/1024 + .. .) sin 4¢
(35¢%/3072 + ...) sin 6¢

+ .. (14)

Along a parallel, which is an E-W rhumb line, Eqns. (8) and (11) diverge,
but since ¢ is constant, we have from Eqn. (6):

s=aRp(L —Ly) = acos¢ (L — Ly)/(1 — e?sin? ¢)*/? (15)

A map with longitude as the x-axis and M (¢) as the y-axis has a Mercator[4]
projection (with the equator as the standard parallel) on which rhumb lines plot
as straight lines with the correct azimuth.

3 (Geodesics on a spheroid

The shortest path between two points on a (smooth) surface is called a geodesic
curve on the surface. On a flat surface the geodesics are straight lines, on a
sphere they are great circles. Remarkably, the path taken by a particle sliding
without friction on a surface will always be a geodesic. This is because a defining
characteristic of a geodesic is that at each point on its path, the local center
of curvature always lies in the direction of the surface normal, that is, in the
direction of any constraint force required to keep the particle on the surface.
There are thus no forces in the local tangent plane of the surface to deflect the
particle from its geodesic path.

There is a general procedure, using the calculus of variations[2], to find the
equation for geodesics given the metric of the surface (ie given Eqn. or (5)) (6).
However, in this case, a simpler argument suffices.



Consider a particle of mass m sliding on the surface of a spheroid. The
constraint forces, normal to the surface, do no work, so the particle’s kinetic
energy mv?/2, and thus its speed v, remain constant. In addition, because
of the spheroid’s axisymmetry, all its surface normals pass through the polar
axis. Thus the constraint forces have zero moment about the polar axis. The
angular momentum of the particle around the polar axis is therefore conserved.
Referring to Figs. 1 and 3 we can write this as mvsina x OD, where vsina is
the azimuthal component of the particle’s velocity and OD is the distance of
the particle from the polar axis OB. Thus, using Eqn. (4) we obtain:

sin o cos @ = sin a cos ¢/ (1 — €% sin? ¢2)*/2 = constant (16)

If we refer to the azimuth of the geodesic as it crosses the equator (6 = ¢ = 0)
as «g, we can evaluate the above constant, obtaining:

sina cos @ = sina cos ¢/ (1 — €2 sin® $2)'/2 = sin ay (17

This equation takes its simplest form when reduced latitudes, 6 are used,
so geodesic calculations are generally done in (6, L) coordinates, with necessary
conversions back and forth to geodetic coordinates being performed using Eqn.
(2). In fact, the relationship between the azimuth a and the reduced latitude 6
on a spheroidal geodesic is the same as on a spherical great circle. This sets up
a correspondence between geodesics and great circles on an auziliary sphere[3]
with a common value of ag. At each (reduced) latitude, 6 the geodesics have
the same azimuth, a. However, distances and longitude differences differ by
O(e?) corrections. The great circle distances and longitude differences can be
used as a first approximation to an iterative or perturbative evaluation of the
corresponding quantities on the spheroidal geodesic.

3.1 Geodesic arc length
From Fig. 3 and Eqn. (17) we see that:

dé
cosa = a(l — e? cos? H)I/Qd— = +(cos? 0 — sin® ag)'/?/ cos b (18)
s
and thus
ds cosB(1 — e? cos? §)/?
= — ta
de (cos? oy — sin” §)1/2
with the sign being that of cos . We now substitute sin§ = sin o cos a, where
ao is the arc-length along the great circle on the auxiliary sphere, measured
from where it crosses the equator in a Northerly direction, obtaining:
ds
do
where u? = e?cos?ap/(1 — €?). By expanding in a power series in u? and
integrating term by term[3, 5], we obtain s in the form:

(19)

= a(1 — €% cos? 0)'/2 = b(1 + u? sin® ¢)'/? (20)

s/b= o(1+u?/4—3u/64+ 5ub/256 — 175u® /16384 + .. )



—sin 20 (u?/8)(1 — u?/4 + 15u* /128 — 35u® /512 4 .. .)
—sindo (u*/256)(1 — 3u®/4 + 35u* /64 — .. )

—sin60 (u®/3072)(1 — 5u?/4 +...)

—sin 80 (5u®/131072)(1 —...)

—.. (21)

The distance between two points s(o2,ag) — s(o1,®p), on a geodesic arc is
best obtained, after differencing Eqn. (21), by using the identity sin(2nos) —
sin(2no1) = 2cos(2no.,) sinn(oy — 01), where o, = (01 + 02)/2. This avoids
excessive loss of significant digits when the two points are close together.

Vincenty[5] has rearranged a subset of the resulting equations into nested
forms more suitable for computation:

tano; = tan¢i/cosag
sinag = cos¢ sinag
u? = e?cos?ag/(1—€?)
2
u
A = 14+ -——(4 2(— %(320 — 175u?
+ Toaag (4096 + u”(~768 + u?(320 — 1750%))
2
u
= 2 2(—-12 2(74 — 47u?
B 1024( 56 + u®(—128 + u*(7 Tu’)))
Om = o01+0/2
B
A = Bsina(cos2am-I-Z((:0s¢7(—1-|-2cos2 20.m)
B
-5 o 20, (=3 4 4sin® 0) (=3 + 4 cos? 20,,))))
s = bA(o—Ao) (22)

In equations (22) the origins of o and s have been shifted from the equator to
the initial point (1), where the reduced latitude is ¢; and the azimuth of the
geodesic is ag.

3.2 Longitude difference
Again from Fig. 3 and Eqn. (17) we see that:

cosf dL
(1 —e2cos?6)1/2 df

tana = (23)

which, in terms of the arc-length on the auxiliary sphere, o, using the geodesic
condition (17) becomes:

dL . (1-e*(1 —cos®ag sin®0))/?
<5 = Sinao

24
(1 — cos2 ag sin® o) 24)



In the spherical limit, e = 0, this is readily integrated to give L = A, where
tan A = sinag tano. A is the longitude difference, corresponding the arc-length
o on the auxiliary sphere.

Expanding in powers of €2 and integrating term by term, we thus obtain:

L=\—e?sinag(Joo + €*Josin 20 + e* Jysindo + € Jg sin 60 + O(e®))  (25)

where
Jo = % (1 + %(2 —p)+ 2—1(8 — 8+ 3p%) + 1506264(16 — 240+ 187 — 5u3))
Jo = % (1 + %(2 —p) + 125—56(?(16 — 16p+ 5u2)>
Ji = 5% <1+ 1?5 (2-,@)
3
Jo = 22/;76
p = cos’ay (26)

Vincenty[5] has again rearranged a subset of the resulting equations into
nested forms more suitable for computation:

L=X—(1-0C)fsinag(oc+Csino(cos 20, +C cosa(—1+2cos? 20,,))) + O(f*)
(27)

where
C = fcos® ag(4 + f(4 — 3cos® ag))/16 (28)

As in Eqn. (22), the origins of o,\ and L have been shifted from the equator
to the initial point (1). A is then given by
sin o sin o

tan A\ = - 29
cos ¢1 cos g — sin ¢4 sin o cos g (29)

on solving the spherical triangle on the auxiliary sphere.
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Symbol Glossary

Geodetic latitude

Reduced latitude, defined by Eqn. (2)
Longitude (difference)

azimuths, clockwise from N (ap at equator)
arc-length along geodesic

longitude (difference) on auxiliary sphere
arc-length on auxiliary sphere

major (equatorial) radius of ellipse
minor (polar) radius of ellipse

flattening b = a(1 — f)

eccentricity b2 = a?(1 — €?)
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